PS218: Understanding Political Numbers
Spring 2017
Mr. Patrick Kearney
North Hall 411
University of Wisconsin, Madison
pmkearney@wisc.edu
Office Hours: Tuesdays 9:30-11:30am and by appointment.

TA: Michael Masterson
Office Hours: TBA in Section

About the Course:
Formally, this course will teach you how to understand data visualization and quantitative analysis, how to develop a data-based research question that you can answer, how to collect and analyze the data and how to present your conclusions to others. There are essentially two components to the course. The first is a theoretical component. Why are numbers and data important to political analysis? What is the proper way to ask a research question? How do we find and use political data to tell a story and support an argument? The second component is technical. How do we employ statistical computing and graphics software to clearly present our data and findings to others?
Yet, on a broader level, this course is about much more than just numbers. It is a skills and tools course. It is about learning how to ask (and answer) the right questions about politics. It is about presenting those answers clearly to an audience. And, it is about employing the computing tools to help get to this end goal. In so doing you will develop the ability to write a data-focused research paper, an essential skill in your academic career and beyond.

Computing Requirements:
You need to have a computer you can use and on which you can install R and R Studio. Both are free and can be run on either Windows and Mac operating systems. They are available for download at www.r-project.org and www.rstudio.com respectively.
R is a free, open source statistical computing environment. R is extremely powerful and flexible. It is at the cutting edge of statistical software and it is the best producer of statistical graphics available. RStudio is an Integrated Development Environment (IDE) for R that combines a text editor, R, and other tools in a single program.
We recognize that R and RStudio take time to master and can be frustrating. That is why we’ll spend so much time during the course learning it. We DO NOT assume any prior knowledge of statistics or R. While we do expect some knowledge of basic computing tasks (creating folders, etc.), this course is designed to provide you all the necessary instruction in the programs you will be using.

Text and Readings:
There are two types of readings for this course. The first are those that are required before the day that they are assigned since we will discuss them in lecture. They deal with subject matter beyond statistics and computing. These are relatively rare (about a half dozen throughout the course) and brief. They are listed in the syllabus and will be posted on Learn@UW.

The second have to do with R itself. In the past I have not assigned a required text for this course. In general, the lectures are self-contained and will allow students to succeed in the course. At the same time, some of your predecessors have asked for the additional resources that a required text provides. With that in mind, I suggest two highly recommended texts. Readings from these will be listed in the syllabus and will supplement the lectures. These are:

R Graphs Cookbook by Hrishi V. Mittal. The best basic text on creating basic graphics in R.

Again, the readings form Mittal and Crawley are not required but they will serve as a solid reference guide for those who wish to utilize them.

I also wish to list here a number of “additional resources” that I can recommend here for anyone who prefers a text. The following are “manuals” of sorts to help you learn R and R Studio.

Visualize This by Nathan Yau This course draws significantly on Yau’s ideas about data visualization.

Getting Started with R Studio by John Verzani

Learning R Studio for R Statistical Computing by van der Loo and de Jong

A Beginner’s Guide to R by Zuur, Ieno and Meesters

R in Action: Data analysis and graphics with R by Kabacoff

R in a Nutshell: A Desktop Quick Reference by Adler
Additionally, websites such as flowingdata.com, fivethirtyeight.com, and nytimes.com/upshot are excellent examples from the news of data analysis and visualization. There also exist a number of web based tutorials on R for slightly more advanced users including the following.

http://www.statmethods.net
http://www.ats.ucla.edu/stat/r/
https://www.r-bloggers.com

Again, lectures, R Script files and other course related material will be regularly posted on Learn@UW throughout the semester and will be enough for you to succeed in the course.

Components of the Grade:

First, we will have a number of exercises designed to demonstrate you’ve learned the basic skills of programming in R. These will be brief, with the goal that you learn how to read data, or make a chart, or conduct an analysis. You will submit your R code and output but generally won’t have to write much beyond that. These will be graded as 1 (satisfactory), .5 (turned in but incorrect or incomplete) and 0 (not turned in). Because we will be discussing solutions to these exercises in class the day they are due, late work WILL NOT be accepted.

Second, you will submit two more in depth analyses of topics that we cover in class. This will be in the form of short essays and several accompanying graphics that illustrate your analysis, created using R. The goal here is to develop your ability to “tell a story with data”, the fundamental objective of the class. These will be graded on the conventional A-F scale.

At the end of the semester, you will write a final paper, similar to the above but longer (12 pages, excluding graphics) and with more detailed analysis. For this project you will choose the subject and be responsible for collecting the data. This essay will also be graded on an A-F scale.

Since this is the most important component of your grade for the course, we will ask you to submit 2 “drafts” in the final weeks of the semester. The first will be a short (2-3 pages) paper proposal in which you identify your research question and plan for your paper. You will be required to meet with either Michael or me to discuss your paper topic before we will accept your proposal. The second will be the submission of the data and codebook that you will use in the analysis section of your final paper.

In addition to developing this paper you will also present your memo/proposal to the members of your discussion section in no more than 7 minutes. You will create a presentation that relies on quantitative information and graphics. Each section will choose the best project from their
section to advance to the finals. Finalists will present their projects to the entire class at the last class meeting. Section presentations begin April 20, with sign up online the week before. The winning presentation, as determined by a ballot of the class and the instructors, will earn an A for the course. All of the finalists are guaranteed at least an AB in the course. All members of the section which the winning presentation represents get 2 percentage points added to their final course grade (you must be present for voting to receive this extra credit and may not vote for your own section).

***All assignments must be submitted online via the Dropbox section of the Learn@UW site. All documents should be submitted in .pdf format. All assignments involving computer coding should also include the R script that generates all your output as a separate file. All sources for data and other information used in your written work must be appropriately documented and sourced such that we can go and confirm every statement and number in the document.

There will be NO final exam.

Grading:
Your final grade will be computed based on Exercises 15%, 2 short essays 15%, Paper Proposal 10%, Data Set and Codebook 10%, Presentation 10% and Final paper 40% The standard UW Grading Scale will be used.

A Note on Attendance:
A number of sessions of this course will be conducted in more of a workshop format as opposed to a traditional lecture. Learning R is like learning a new language; it takes lots of hands on practice. As such, attendance is extraordinarily important. While I won’t often take formal attendance, it is my experience that it is extraordinarily difficult to pass this course without regularly showing up. Additionally, since a large component of this course involves computing, it is perfectly acceptable to use laptops during lecture. That said, if your laptop is open I expect you to be working in R Studio not your social media accounts.

***Students affiliated with the McBurney Center should see me about any necessary accommodations.
Course Outline

Below you will find the tentative outline for the semester. Be aware that these topics and dates are subject to change. This is especially important since we will take this course at your pace (i.e. if we need to spend more time on certain skills, we will). As such, consult Learn@UW, your e-mail and/or in class announcements for up to date changes.

Week 1
Wednesday, January 18—Intro and Syllabus

Week 2
Monday, January 23—Thinking about Political Numbers (Discuss Readings)

Readings--Intro from The Signal and the Noise by Silver and Ch. 1&2 from Visualize This by Yau

Wednesday, January 25—Thinking About Data Visualization

Week 3
Monday, January 30—Introduction to R and R Studio

Crawley Chapters 1-3 (keep in mind this reading will go far beyond what we have covered in lecture up to this point. We will continue covering this throughout the semester….use it as a continuing reference throughout the semester, not as something that must be memorized today)

Wednesday, February 1—Elections and Numbers

Online readings regarding 2012 Presidential Election

Week 4
Monday, February 6—Histograms in R

Mital Chapters 2 and 6

Exercise 1 distributed

Wednesday, February 8—More on Histograms, Bar and Box Plots in R

Mital Chapter 7

Week 5
Monday, February 13—Health Care Discussion and World Health Data
Reading---*The Healing of America* by Reid, Ch. 1&3

Wednesday, February 15—Scatter Plots in R

Exercise 1 due

Mital Chapter 3

Week 6

Monday, February 20—More on Scatter Plots

Exercise 2 distributed

Wednesday, February 22—Basic linear trend lines in R

Crawley Chapters 9 & 10

Week 7

Monday, February 27—Interpreting Linear Models and p-values

Wednesday, March 1—Non-Linear Relationships (Logarithmic)

Exercise 2 due

Week 8

Monday, March 5—Alabama Election and Plotting Linear Models

Readings—Articles on Alabama and Wisconsin Gubernatorial Elections

Exercise 3 distributed

Wednesday, March 8—Data Collection and Management in R and Excel

Essay 1 distributed

Week 9

Monday, March 13—What are Good Research Questions??

Wednesday, March 15—Where do I find data??

Exercise 3 due

SPRING BREAK

Week 10

Monday, March 27—Basic Multivariate Linear Models in R

Essay 1 Due

Wednesday, March 29—More with Basic Multivariate Models—Control Variables and Levels of Observation

Essay 2 distributed
Week 11
Monday, April 3— Discuss Paper Topics
Wednesday, April 5— Plotting Data Over Time in R
 Essay 2 due
 Paper Proposal due SUNDAY 4/9 by 11:59pm

Week 12
Monday, April 10— Writing your paper and presentations...a full outline of what we expect
Wednesday, April 12— Merging and Reshaping Data

Week 13
Monday, April 17—Advanced Topics in R-- Black Death and Presidential Approval (More Time Series)
Wednesday, April 19— Advanced topics in R and Visualization—the Challenger

 Presentations in Section Begin Thursday 4/20
 Data Set and Codebook due SUNDAY 4/23 by 11:59pm

Week 14
Monday, April 24—Advanced topics in R
Wednesday, April 26—Political Numbers in the News

Week 15
Monday, May 1— The Future of Political Numbers
Wednesday, May 3— Final Paper Presentations

Saturday, May 6—**Final Paper Due** 11:59pm